Genome-Wide DNA Methylation Analysis In Plants and Animals

Xueguang Sun, TzuHung Chung, Eliza Bacon, Ron Leavitt, Nikolas Isely, Marc Van Eden & Xi-Yu Jia Zymo Research Corporation, Irvine, CA

BASIC SERVICE

FULL SERVICE

PACKAGE

The Beauty of Science is to Make Things Simple

ZYMO RESEARCH

Abstract

DNA methylation is a highly conserved epigenetic mark present in many eukaryotic organisms including plants, animals, and It plays an important role in the regulation of gene fungi. expression. A number of studies have shown its involvement in plant and animal growth and reproduction primary through the processes of genomic imprinting, X-chromsome inactivation, and the silencing of transposons and other repetitive DNA elements. As such, the understanding of DNA methylation has become a major focus of the research conducted during the "post-genomics" However, the precise determination of a DNA's methylation era. pattern on a genomic scale has posed a challenge especially for those complex genomes. Combining well-established bisulfite conversion chemistry with NextGen sequencing, we have established a robust service platform for analyzing DNA methylation with single base resolution at the genomic scale. The service features a streamlined workflow coupled with a comprehensive bioinformatics pipeline to provide both a consolidated and costeffective solution for epigenetic analysis of plant and animal genomes. This technology has been used successfully for the analysis of methylomes from many organisms including soybean, mouse, and chicken. Additional analyses of other species are ongoing. Those data should provide a means to understanding how environment as well as other factors may alter an organism's fitness through heritable changes in epigenetic gene expression.

Service comparison

cedure for optimized performance and limited sample los

ndonuclease digestion, end modification, adaptor addition, size selection

Alignment of sequencing data to the corresponding reference genome using proprietar

Delivery of a consolidated printed report including: service checklist, performance

metrics, statistics, select graphical data, and more. Project data will be provided to the

Next-Gen sequencing using the latest technologies available from Illumina®

EPIQUEST NEXT-GEN SEQUENCING DNA METHYLATION ANALYSIS

reatment (conversion), limited amplification

lient on a hard drive

niRNAs, enhancers, and more!

Expanded analysis of CHG and/or CHH methylation.

state of the art bioinformatic algorithms and software

Service Performed

Sample Processing

& Library Preparation

Next-Gen Sequencing

Sequencing Validation & Bioinformatic Analysis

Data Output & Delivery

panded Genomic Analyse

stomized Bioinformatic

cessing & Data Output

nalysis of Non-CpG Methylation

Data Provided

enomic DNA Sample Validat

		hyper/hypo	methylation	gene list
--	--	------------	-------------	-----------

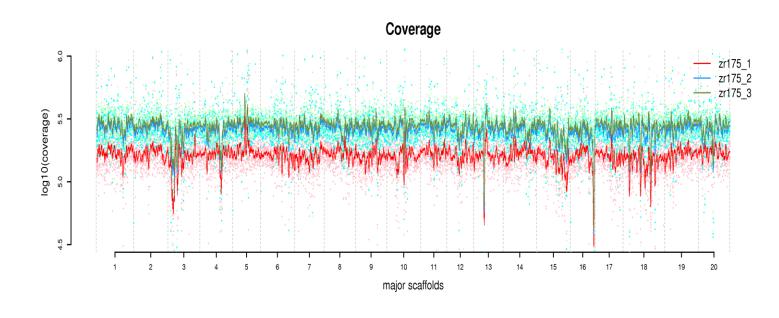
		Emb1			PGC1		Emb1 vs. PGC1		PGC1	
chromstart	chromend	Meth Ratio	Total CpGs	Unique CpGs	Meth Ratio	Total CpGs	Unique CpGs	Methylation Ratio Diff	pValue	Classification
79541375	79541928	0.9122332	546	5	0.0511609	640	5	0.86107	2.76E-234	stronglyHypermeth
1880724	1880937	0.875	8	8	0.0520833	93	8	0.82292	3.51E-07	stronglyHypermeth
32354	33231	0.9481061	92	11	0.1519841	92	12	0.79612	4.50E-21	stronglyHypermeth
71798662	71799033	0.8473568	1315	5	0.0534008	1045	5	0.79396	0.00E+00	stronglyHypermeth
79542904	79543350	0.8097766	9129	32	0.0259019	15379	35	0.78387	0.00E+00	stronglyHypermeth
79535777	79537276	0.8379483	132	4	0.0665205	150	4	0.77143	3.17E-42	stronglyHypermeth
6063757	6064070	0.8382143	77	10	0.087031	195	12	0.75118	7.18E-37	stronglyHypermeth
10456519	10456785	0.7605311	122	14	0.0125	148	10	0.74803	5.05E-37	stronglyHypermeth
836790	837765	0.7669627	350	23	0.0252523	672	26	0.74171	6.18E-166	stronglyHypermeth
7087287	7087775	0.7817155	217	15	0.0617284	159	15	0.71999	1.37E-43	stronglyHypermeth
1183579	1184131	0.8	28	10	0.0868946	65	6	0.71311	7.03E-16	stronglyHypermeth
52139	52951	0.7509345	541	29	0.055267	1368	29	0.69567	1.51E-240	stronglyHypermeth
71697511	71698066	0.821115	710	5	0.1337576	799	5	0.68736	9.15E-152	stronglyHypermeth
28893	29346	0.750568	537	5	0.0883531	2346	5	0.66221	1.52E-225	stronglyHypermeth
14401560	14403554	0.7305698	291	11	0.0729431	678	11	0.65763	2.09E-73	stronglyHypermeth
14383362	14385380	0.7466794	728	10	0.0907709	1524	10	0.65591	6.33E-247	stronglyHypermeth
2124488	2125129	0.6603454	140	14	0.0054945	148	13	0.65485	1.17E-14	stronglyHypermeth
55446106	55446429	0.7651515	47	4	0.125	5	4	0.64015	2.06E-02	stronglyHypermeth
4527633	4528265	0.7057089	359	29	0.0674149	570	25	0.63829	2.34E-90	stronglyHypermeth
7155773	7156222	0.7248789	91	15	0.0909909	172	11	0.63389	2.34E-18	stronglyHypermeth

Pair-wise comparison was performed between the different samples, DMR were counted according to hyer/hypo methylation.

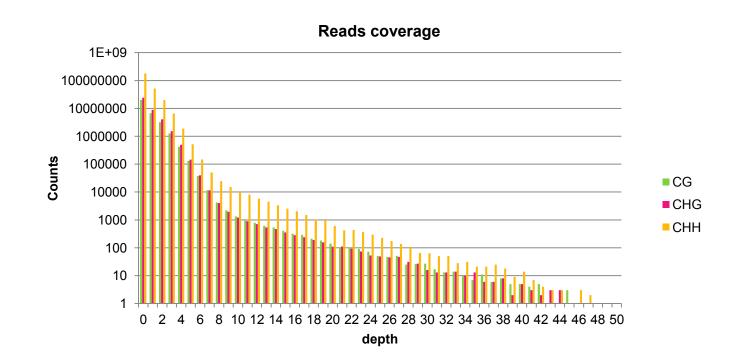
Genome Browser Tracks	Three (3) UCSC browser tracks: CpG track, Next-Gen sequencing read track, and endonuclease-digested fragment track. Reference UCSC Genome Browser: (http://genomes.ucsc.edu)	~	~	~	~						
Sequence Coverage Information	Statistical coverage (pie chart) of genomic features analyzed (i.e., CpG Islands, promoter regions, etc.)			~							
Hierarchical Clustering	Distribution (heat map) of methylated vs. non-methylated loci between two (2) or more samples.			~	Inquire						
Methylation Frequency	Pairwise sample comparisons (barchart) of methylation frequencies in CpG islands, promoter regions, etc.			~							
Methylation Index	Global methylation (percentage) for CpG Islands, promoters, etc.			✓ ✓	inguno						
Differentially Methylated Regions	Index of hyper- and hypo-methylated regions for biomarker candidate determination.										
Correlation Data	Pearson correlation for pairwise data comparison between samples.			~							
and much more!	Our unique bioinformatics pipeline is used to generate >35 publication-ready figures and tables for easy data interpretation and sample comparison.			~							
	Inquire [†]		Inquire [†]								
ADDITIONAL CUSTOMIZED SERVICES ARE AVAILABLE											
Non-Human & -Mouse Sampling	Samples from organisms other than human and mouse having annotated genomes can also be processed with the EpiQuest [™] Genome-Wide DNA Methylation workflow.										
DNA Extraction/Purification from Difficult Sample Sources											

nalysis of gene bodies, repeated elements, exons, introns, non-coding RNAs

Our bioinformaticians can customize data delivery and graphics upon request.


Genome-wide 5mC profiling in chicken

Cost (per sample)

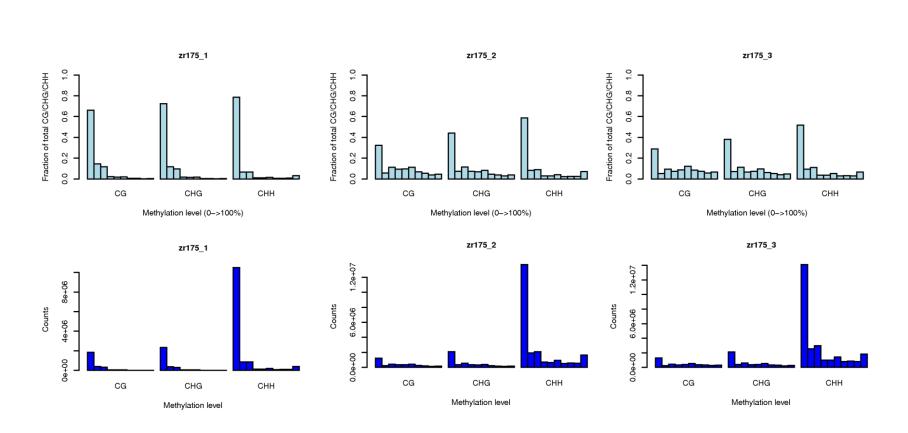

Whole Genome 5mC profiling in soybean

Genome coverage

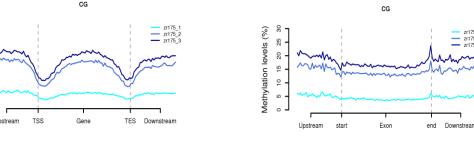
Coverage per cytotine

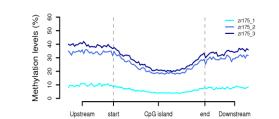
Introduction

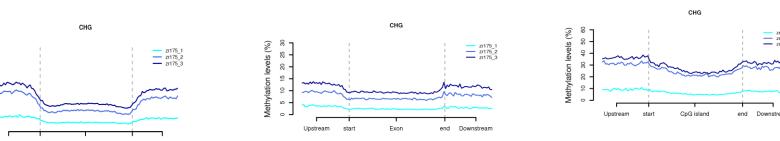
The EpiQuest[™] Genome-Wide DNA methylation Profiling Service expands upon the conventional RRBS (Reduced-Representation Bisulfite Sequencing) method to greatly increase sequence analysis of CpG-riched DNA. Through an unique library preparation procedure and an optimized workflow, the EpiQuest[™] team at Zymo Research has been able to expand coverage to $\geq 80\%$ of all gene promoters and ≥85% of CpG islands (for human samples).

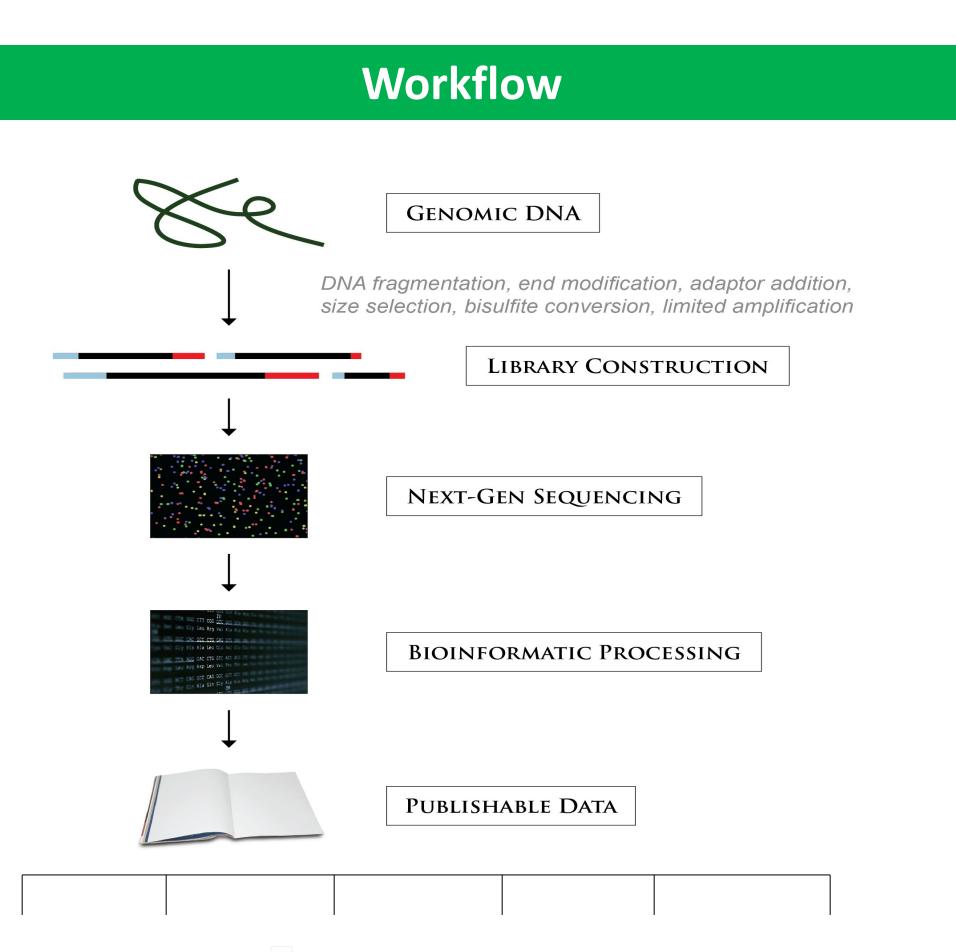


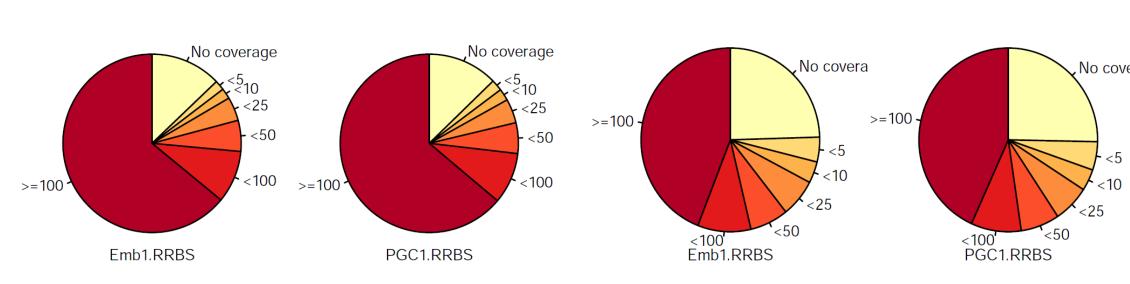
The EpiQuest[™] Whole-Genome DNA methylation Profiling utilizes a streamlined library preparation and Service sophisticated alignment algorithms to deliver Whole Genome Bisulfite-Sequencing data that covers >80% of all the bases in the human genome at single-base resolution.

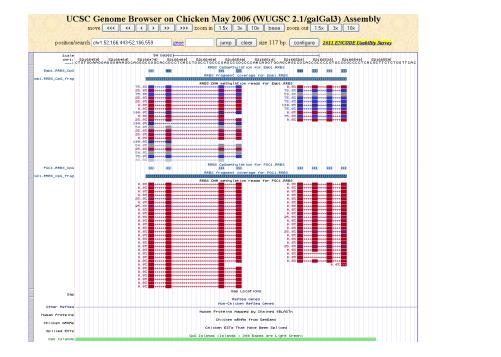



Genome Coverage :


> Distribution of CG/CHG/CHH sites for three soybean samples

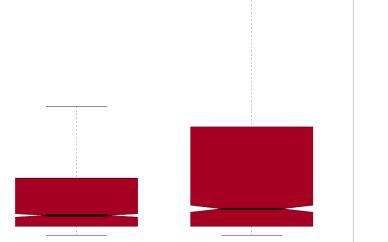



Metaplot for gene, exon and CpG island

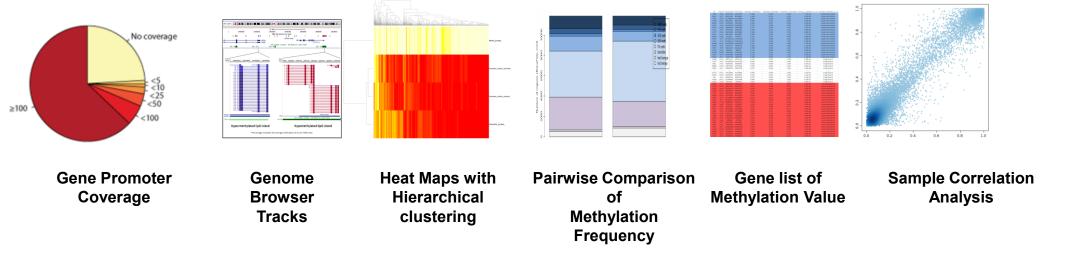


CpG island

Pie charts shows the overall distribution of sequencing reads coverage

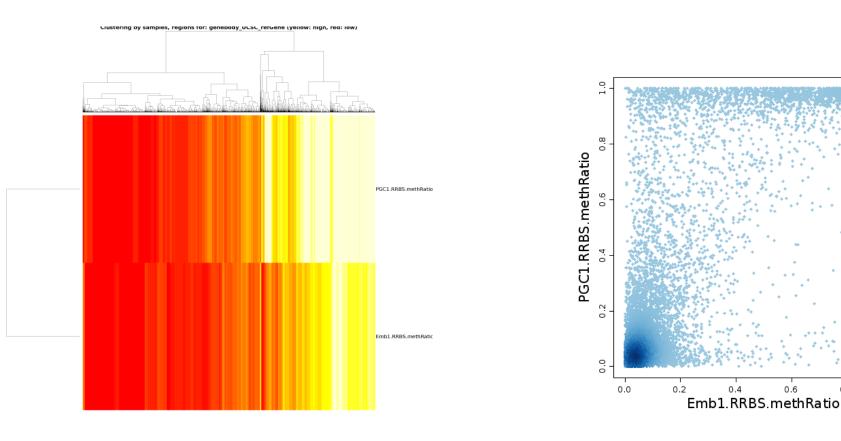

UCSC genome browser track

Methylation Index


promoter_UCSC_refGene_TSS-2000 (#regions: 2042) - Mean DNA methylation levels

Correlation analysis

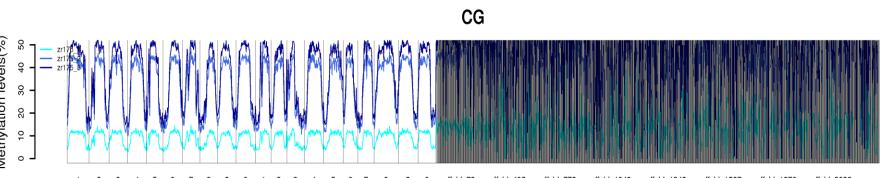
Gene promoter



Key features

- ✓ Next-Gen sequencing based platforms
- ✓ Low DNA input
- \checkmark Applicable to a broad range of sample sources (human, mouse, rat, plant, etc.)
- ✓ Streamlined workflows with comprehensive bioinformatic analysis and high quality publishable data delivery.
- ✓ Customizable, rapid turnaround at an affordable cost.

Browser tracks show the sequencing Mean DNA Methylation Levels for reads and methylation value Gene Promoter


Hierarchical clustering:

Heatmap shows the hierarchical clustering by region and sample

Pearson correlation for pairwise data comparison between samples zr175_1 zr175_2 zr175_3

Genome methylation level

References

- Meissner A, Mikkelsen TS, Gu H, Wernig M etc. Nature. 2008 Aug 7;454(7205):766-70.
- 2. Smith ZD, Gu H, Bock C, Gnirke A, Meissner A. Methods. 2009 Jul;48(3):226-32