Catalog No. D6400

Quick Protocol: High Microbial DNA Samples

Notice

The optimal DNA concentration for the *Quick*-16S[™] NGS Library Prep Kit is 5-20 ng/µl bacterial DNA, excluding host DNA. This Quick Protocol should be used only for DNA samples that are concentrated within this range.

Protocol

Before Starting

- ✓ **Sample Quantity Requirement.** The PCR conditions and normalization guidelines were designed based on the assumption that there are at least 24 samples in one run; therefore, <u>each run requires a minimum</u> of 24 samples.
- ✓ **Input DNA Guidelines.** All DNA samples should be free of PCR inhibitors. The concentration of each sample must be 5-20 ng/µl bacterial DNA, excluding host DNA.
- ✓ Choosing a Targeted Primer Set. Included in the Quick-16S[™] NGS Library Prep Kit are two 16S primer sets: the Quick-16S[™] Primer Set V1-V2 and the Quick-16S[™] Primer Set V3-V4. Use only one primer set for one PCR/well (i.e., do not mix the two sets into one well). For assistance in choosing a targeted primer set, see the table below.

Primer Set	Region Targeted	Features of the Region		
<i>Quick</i> -16S [™] Primer Set V1-V2	16S V1-V2	 Better species-level resolution for many human-associate microbes when compared to the V3-V4 region. Excellent coverage for common genera such as Methanobrevibacter, Bifidobacterium, Propionibacterium, Rickettsia, Chlamydia, and Treponema. 		
<i>Quick</i> -16S [™] Primer Set V3-V4	16S V3-V4	 Broader phylogenetic coverage than the V1-V2 region. Broad coverage for Archaea. Improved coverage for <i>Chloroflexi</i> and <i>Candidate Phylum Radiation</i> (CPR). 		

Catalog No. D6400

Quick Protocol: High Microbial DNA Samples

Section 1: Targeted Sequence Amplification

1. Set up a master mix according to the component volumes in the table below:

Component	Volume/Reaction
Quick-16S™ qPCR Premix	10 µl
Quick-16S™ Primer Set V3-V4*	4 µl
ZymoBIOMICS® DNase/RNase Free Water	4 µl
Total	18 µl

^{*}Only one *Quick*-165[™] Primer Set should be used during Targeted Sequence Amplification. For more information on the *Quick*-165[™] Primer Sets, please view "Choosing a Targeted Primer Set" on page 1.

- 2. Add 18 μ I of the master mix to each well of a 96-well real-time plate labeled "Targeted Plate." A sample of the plate setup can be found on page 3.
- 3. Add 2 µl of your DNA samples to individual wells. Include a positive and negative control in the plate. The **ZymoBIOMICS® Microbial Community DNA Standard** (included in this kit) should be used as a positive control.
- 4. Apply adhesive PCR plate seal. Mix the plate on a plate shaker and centrifuge in a plate spinner.
- 5. Place "Targeted Plate" in a thermocycler and run the program shown below:

Temperature	Time	_
95°C	10 min	_
95°C	30 sec	_]
55°C	30 sec	00 avalaa
72°C	3 min	20 cycles
Plate read	-	_
4°C	Hold	_

Recommended Program Title: Targeted Sequence Amplification

6. Once the samples have cooled to 4°C, stop the program. Centrifuge "Targeted Plate" in a plate spinner to collect condensation in wells and place plate on ice. Proceed to Section 2 immediately.

Quick-16S™ NGS Library Prep Kit

Catalog No. D6400

Quick Protocol: High Microbial DNA Samples

Section 2: Reaction Clean-up

- 1. Add 1 µl of **Reaction Clean-up Solution** to each reaction well in the "Targeted Plate" from **Section 1**.
- 2. Apply adhesive PCR plate seal. Mix the plate on a plate shaker and centrifuge in a plate spinner.
- 3. Place the plate in a real-time thermocycler and run the program shown below:

Temperature	Time
37°C	15 min
95°C	10 min
4°C	Hold

Recommended Program Title: Reaction Clean-up

4. Once the samples have cooled to 4°C, stop the program. Centrifuge the plate in a plate spinner to collect condensation in wells and place plate on ice. Proceed to <u>Section 3</u>, or store plate at ≤ -20°C if necessary for later use.

Section 3: Barcode Addition

1. Set up a master mix according to the component volumes in the table below:

Component	Volume/Reaction
Quick-16S™ qPCR Premix	10 µl
ZymoBIOMICS® DNase/RNase Free Water	4 µl
Total	14 µl

- 2. Add 14 µl of the master mix to each well of a new 96-well real-time PCR plate labeled "Barcoded Plate."
- 3. From Index Primer Set A, add 2 µl of the Index Primer ZA7xx and 2 µl of the Index Primer ZA5xx to the proper wells as indicated in the diagram below:

Index Primers ZA7xx

ZA701 ZA705 ZA706 ZA707 7A702 ZA703 7A704 ZA708 ZA709 ZA710 ZA711 7A712 2 3 5 6 7 9 10 11 12 ZA501 S17 S25 S41 ndex Primers ZA5xx S26 ZA502 В S10 S18 S34 S42 S50 S58 S74 S82 S2 S66 S91 ZA503 С S3 S11 S19 S27 S35 S43 S51 S59 S67 S75 S83 ZA504 D S12 S20 S28 S36 S44 S52 S60 S76 S84 ZA505 Е S5 S13 S21 S29 S37 S45 S53 S61 S85 S93 S69 ZA506 S6 S14 S30 S62 S94 S22 S38 S46 S54 S70 S78 S86 ZA507 G S7 S15 S23 S31 S39 S47 S55 S63 S71 S79 S87 POS* ZA508 S56

(Continued on next page.)

^{*} POS: The ZymoBIOMICS® Microbial Community DNA Standard should be used as a positive control.

^{**} NEG: A no template control should be used as a negative control.

Catalog No. D6400

- 4. Pipette mix and transfer 2 μl of the DNA samples from the "Targeted Plate" collected at the end of Section 2 to the corresponding wells of the "Barcoded Plate."
- 5. Apply adhesive PCR plate seal. Mix the plate on plate shaker and centrifuge in a plate spinner.
- 6. Place "Barcoded Plate" in a real-time thermocycler and run the program shown below:

Temperature	Time	_	
95°C	10 min		
95°C	30 sec		
55°C	30 sec		
72°C	3 min		5 cycles
Plate read	-		
4°C	Hold		

Recommended Program Title: Barcode Addition

- 7. Sample Quality Control: Examine the amplification curve of each sample to confirm that every reaction behaves reasonably.
- 8. Keep "Barcoded Plate" in the real-time thermocycler and run the program shown below:

Temperature	Time
72°C	2 min
Plate read	-
4°C	Hold

Recommended Program Title: Plate Read

9. Record and save the fluorescence reading of each reaction from the "Plate Read" program for library quantification in <u>Section 4</u>. Proceed to <u>Section 4</u>, or store plate at ≤ -20°C if necessary for later use.

Catalog No. D6400

Quick Protocol: High Microbial DNA Samples

Section 4: Library Quantification and Pooling

Steps 1-4 below are for creating a fluorescence standard curve. These measurements for a real-time PCR system should be stable for at least 3 months.

1. To a new 96-well real-time PCR plate labeled "Standards Plate," add 20 μl of each **Fluorescence Standard (1-4)**, in triplicate, to individual wells as indicated below:

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С					Fluores	scence Star	ndard 1					
D					Fluorescence Standard 2							
Е					Fluorescence Standard 3							
F					Fluorescence Standard 4							
G												
Н												

- 2. Apply adhesive PCR plate seal.
- 3. Place "Standards Plate" in the same real-time thermocycler used for "Barcoded Plate" in <u>Section 3</u> and run the program shown below:

Temperature	Time
72°C	2 min
Plate read	-
4°C	1 min

Recommended Program Title: Fluorescence Standards Plate Read

- 4. Record and save the fluorescence reading of each reaction from the "Fluorescence Standards Plate Read" program for library quantification.
- 5. Download the Library Quantification and Pooling Template file by clicking here (USA only), or by visiting the Documentation section of the D6400 Product Page at www.zymoresearch.com.
- 6. Input the values from the "Fluorescence Standards Plate Read" program (Section 4, Step 4) in the appropriate positions in Table 1 of the file.
- 7. Input the values obtained from the "Plate Read" program (<u>Section 3</u>, Step 9) in the appropriate positions in Table 3 of the file.
- 8. Input the desired amount of product for each sample you would like to use for normalization (e.g. 30 ng) in the appropriate positions in Table 5 of the file. Table 6 will calculate the volume required of each sample for normalization.
- 9. Place a new microcentrifuge tube on ice. Pool the required volume of each sample from the "Barcoded Plate" into the microcentrifuge tube. Proceed to <u>Section 5</u> immediately.

Quick-16S™ NGS Library Prep Kit

Catalog No. D6400

Quick Protocol: High Microbial DNA Samples

Section 5: Final Library Clean-up

- 1. Resuspend the magnetic particles of the **Select-a-Size MagBeads** by vigorously shaking until homogenous.
- 2. Add 0.8 x *volume of pooled library* of **Select-a-Size MagBeads** to the pooled library from <u>Section 4</u>. Use the values found in Table 7 in the Library Quantification and Pooling Template. For example, add 80 μl of Select-a-Size MagBeads to 100 μl pooled library.
- 3. Mix thoroughly by pipetting or vortexing until homogenous. Incubate for 5 minutes at room temperature.
- 4. Place the sample on a magnetic rack and incubate for 3-10 minutes at room temperature, or until the magnetic beads have fully separated from solution.
- 5. Once the beads have cleared from solution, remove and discard the supernatant.
- 6. While the beads are still on the magnetic rack, add 200 μl of **DNA Wash Buffer**. Remove and discard the supernatant. Repeat this step.
- 7. While the beads are still on the magnetic rack, aspirate out any residual buffer with a 10 µl pipette tip.
- 8. Remove sample from the magnetic rack. Incubate for 3 minutes at room temperature to remove all traces of buffer.
- 9. Add 10-20 μl of **ZymoBIOMICS® DNase/RNase Free Water** to the beads and pipette mix thoroughly. Incubate at room temperature for 2 minutes.
- 10. Place the sample on a magnetic rack for 1 minute to separate the magnetic beads from eluate.
- 11. Transfer supernatant to a clean microcentrifuge tube.

The ultra-pure pooled library DNA is now ready for use.